metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{N-[2-(2-hydroxyethylamino)ethyl]salicylideneiminato- $\kappa^3 O, N, N'$ }chromium(III) chloride

Yu-Zhou Yuan, Jian Zhou* and Xing Liu

Department of Chemistry and Biology, Yulin Normal University, Yulin 537000, People's Republic of China Correspondence e-mail: jianzhou888888@163.com

Received 23 April 2007; accepted 28 April 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.149; data-to-parameter ratio = 16.9.

In the title complex, $[Cr(C_{11}H_{15}N_2O_2)_2]Cl$, the Cr^{III} ion is coordinated by four N atoms and two O atoms from two tridentate N-[2-(2-hydroxyethylamino)ethyl]salicylideneimine (sadol) ligands to form a distorted octahedron. A centrosymmetric dimer is constructed through the formation of O– $H \cdots Cl$ and N– $H \cdots Cl$ hydrogen bonds.

Related literature

For related literature, see: Choi *et al.* (2003); Cornman *et al.* (1992); Cros *et al.* (1987); Darensbourg *et al.* (2004); Gabriel *et al.* (2007); Haber *et al.* (2003); Li *et al.* (1988); Plass (1996); Qiu *et al.* (2004); Taylor (1978); Usman *et al.* (2003); Vaqueiro *et al.* (2003); Yang *et al.* (2004); Zhu, Lin, Meng, Zou & Wang (2003); Zhu, Liu, Wang & Wang (2003).

Experimental

Crystal data

$[Cr(C_{11}H_{15}N_2O_2)_2]Cl$	$V = 2257.54 (12) \text{ Å}^3$
$M_r = 501.95$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 9.8883 (3) Å	$\mu = 0.66 \text{ mm}^{-1}$
b = 24.6255 (6) Å	T = 153 (2) K
c = 10.3494 (4) Å	$0.15 \times 0.13 \times 0.09 \text{ mm}$
$\beta = 116.3880 \ (10)^{\circ}$	

Data collection

```
Rigaku R-AXIS Spider
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{\rm min} = 0.907, T_{\rm max} = 0.945
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.149$	independent and constrained
S = 1.06	refinement
5165 reflections	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
306 parameters	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$

21950 measured reflections

 $R_{\rm int} = 0.047$

5165 independent reflections

4097 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $O2-H2O\cdots Cl1$ 0.86 (5) 2.31 (5) 3.175 (3) 178 (4) $O4-H4O\cdots Cl1^i$ 0.78 (4) 2.54 (4) 3.229 (3) 149 (4) $N4-H4N\cdots Cl1$ 0.85 (4) 2.62 (4) 3.457 (3) 168 (4)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2N \cdots Cl1 \qquad 0.87 (3) \qquad 2.30 (3) \qquad 3.170 (2) \qquad 177 (3)$	$D2 - H2O \cdots Cl1$ $D4 - H4O \cdots Cl1^{i}$ $N4 - H4N \cdots Cl1$ $N2 - H2N \cdots Cl1$	0.86 (5) 0.78 (4) 0.85 (4) 0.87 (3)	2.31 (5) 2.54 (4) 2.62 (4) 2.30 (3)	3.175 (3) 3.229 (3) 3.457 (3) 3.170 (2)	178 (4) 149 (4) 168 (4) 177 (3)

Symmetry code: (i) -x, -y + 1, -z.

Data collection: *RAPID-AUTO* (Rigaku, 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1995); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of the Education Committee of Guangxi Province, and by the Teaching and Research Award Programme for Outstanding Young Teachers in Higher Education Institutions of the Chinese Ministry of Education. The authors are also grateful to Yulin Normal University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2018).

References

Choi, J.-H., Suzuki, T. & Kaizaki, S. (2003). Acta Cryst. E59, m812-m813.

- Cornman, C. R., Colpas, G. J., Hoeschele, J. D., Kampf, J. & Pecoraro, V. L. (1992). J. Am. Chem. Soc. 114, 9925–9933.
- Cros, G., Laurent, J.-P. & Dahan, F. (1987). Inorg. Chem. 26, 596-599.
- Darensbourg, D. J., Mackiewicz, R. M., Rodgers, J. L., Fang, C. C., Billodeaux, D. R. & Reibenspies, J. H. (2004). *Inorg. Chem.* 43, 6024–6034.
- Gabriel, C., Raptopoulou, C. P., Terzis, A., Tangoulis, V., Mateescu, C. & Salifoglou, A. (2007). *Inorg. Chem.* 46, 2998–3009.
- Haber, V., Cisarova, I. & Fabry, J. (2003). Polyhedron, 22, 3451-3459.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, X. H., Lah, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657-4664.
- Plass, W. (1996). Angew. Chem. Int. Ed. Engl. 35, 627-631.
- Qiu, X.-Y., Liu, Q.-X., Wang, Z.-G., Lin, Y.-S., Zeng, W.-J., Fun, H.-K. & Zhu, H.-L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 150–152.
- Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo. Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Taylor, D. (1978). Aust. J. Chem. 31, 1455-1462.

Usman, A., Fun, H.-K., Chantrapromma, S., Zhu, H.-L. & Liu, Q.-X. (2003). *Acta Cryst.* E**59**, o215–o217.

- Vaqueiro, P., Chippindale, A. M. & Powell, A. V. (2003). *Polyhedron*, **22**, 2839–2845.
- Yang, S., Liu, Q.-X., Zeng, W.-J., Zou, Y., Wang, Z.-G. & Zhu, H.-L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 155–156.
- Zhu, H.-L., Lin, Y.-S., Meng, F.-J., Zou, Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m878–m879.
- Zhu, H.-L., Liu, X.-Y., Wang, Y.-F. & Wang, D.-Q. (2003). Z. Kristallogr. New Cryst. Struct. 218, 257–258.

Acta Cryst. (2007). E63, m1580-m1581 [doi:10.1107/S1600536807021289]

Bis{N-[2-(2-hydroxyethylamino)ethyl]salicylideneiminato- $\kappa^3 O$,N,N}chromium(III) chloride

Y.-Z. Yuan, J. Zhou and X. Liu

Comment

During the past decades, complexes of *N*-(2-(2-hydroxyethylamino)ethyl) salicylideneimine Schiff base (sadol) and its derivatives with transition metal have attracted considerable interest because of their potential applications in biological and magnetic properties (Plass, 1996; Cros *et al.*, 1987; Li *et al.*, 1988). Some structurally related complexes of sadol have been reported. These examples include mono-nuclear structures, such as Cd(sadol)₂. 2H₂O (Yang *et al.*, 2004), [VO(sadol)(acac)] (Li *et al.*, 1988), VO(sadol)(cat) (Cornman *et al.*, 1992), [ZnCl₂(sadol)] (Usman *et al.*, 2003) and [Co(sadol)₂]Cl (Zhu, *et al.*, 2003), and dimers, as exemplified by [VO₂(sadol)]₂ (Li *et al.*, 1988), [{Cd(sadol)(ClO₄)}₂] (Haber *et al.*, 2003) and [{Zn(sadol)}₂SO₄] (Qiu *et al.*, 2004). As an extension of these studies, we report here the structure of [Cr(C₁₁H₁₅N₂O₂)₂]Cl, (I).

The complex consists of discrete $[Cr(sadol)_2]^+$ cations with chloride anions as counterions (Fig. 1, Table 1). The Cr(III) ion is coordinated by four N atoms and two phenoxo O atoms from two sadol ligands to form a slightly distorted octahedron, which can be seen from the *trans*-angles varying from 172.00 (9) to 172.26 (8) ° and the *cis*-angles in the range of 81.76 (9)–95.25 (9)°, respectively. Chelation of Cr by the sadol ligand forms a six-membered ring and a five-membered ring, which contribute to the stability of the complex cation. The hydroxy O atom is non-coordinating, mainly because the coordination sphere of the metal ion is completed by two tri-dentate sadol ligands. This phenomenon is observed in Cd(sadol)₂·2H₂O (Yang *et al.*, 2004) and Co(sadol)₂·NO₃ (Zhu, *et al.*, 2003). The Cr—O bond distances are 1.9207 (19) Å for Cr1—O1 and 1.929 (2) Å for Cr1—O3 and are shorter than those in other Cr(III) oxygen-containing complexes, (NH₄)₄ [Cr(C₆H₄O₇)(C₆H₅O₇)]·3H₂O [1.933 (2)–1.993 (2) Å] (Gabriel *et al.*, 2007), K₃[Cr(C₂O₄)₃]·3H₂O [1.955 (2)–1.985 (2) Å] (Taylor, 1978) and K₂[Cr₂(C₆ H₆NO₆)₂ (OH)₂]·6H₂O [1.937 (4)–1.983 (3) Å] (Choi, 2003). The Cr—N bond lengths ranging from 2.009 (2) to 2.135 (2) Å are in agreement with corresponding bond distances in [Cr(C₆H₁₈N₄)(SbS₃)] (Vaqueiro *et al.*, 2003) and (salen)Cr(III)*X* (*X*=Cl, N₃) (Darensbourg *et al.*, 2004).

In I, two $[Cr(sadol)_2]^+$ cations are linked into a centro-symmetric dimer by four O—H···Cl and two N—H···Cl hydrogen bonds, all involving the Cl anion as the acceptor (Fig. 2).

Experimental

Single crystals of the title complex suitable for X-ray crystallographic analysis were obtained by solvothermal treatment of $CrCl_3 \cdot 6H_2O$ (0.2 mmol) and salicylaldehyde (0.4 mmol),2-hydroxyaminoethylamine (0.4 mmol) and ethanol (3 ml). The reagents were placed in a thick Pyrex tube (*ca* 20 cm long). The tube was cooled with liquid N₂ and the air evacuated. The sealed tube was heated at 353 K for 4 d to yield brown chunk crystals in about 43% yield.

Refinement

H atoms on the C atoms were positioned geometrically and were allowed to ride on their parent atoms, with C—H = 0.95 Å or 0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$. H atoms on the O and N atoms were located from difference Fourier maps and freely refined.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms are omitted for clarity.

Fig. 2. The centrosymmetric dimer constructed by the combination of O—H···Cl and N—H···Cl hydrogen bonds. [Symmetry code: (i) -x, -y + 1, -z.]

Bis{N-[2-(2-hydroxyethylamino)ethyl]salicylideneimine- $\kappa^3 O, N, N'$ } chromium(III) chloride

Crystal data	
[Cr(C ₁₁ H ₁₅ N ₂ O ₂) ₂]Cl	$F_{000} = 1052$
$M_r = 501.95$	$D_{\rm x} = 1.477 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 22244 reflections
a = 9.8883 (3) Å	$\theta = 3.3 - 27.5^{\circ}$
<i>b</i> = 24.6255 (6) Å	$\mu = 0.66 \text{ mm}^{-1}$
c = 10.3494 (4) Å	T = 153 (2) K
$\beta = 116.3880 \ (10)^{\circ}$	Block, brown
$V = 2257.54 (12) \text{ Å}^3$	$0.15\times0.13\times0.09~mm$
Z = 4	

Data collection

Rigaku R-AXIS Spider diffractometer	5165 independent reflections
Radiation source: Rotating anode	4097 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 153(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.3^{\circ}$

Absorption correction: empirical (using intensity
measurements) $h = -12 \rightarrow 12$
(ABSCOR; Higashi, 1995) $T_{\min} = 0.907, T_{\max} = 0.945$ $k = -31 \rightarrow 31$
 $l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.149$	$w = 1/[\sigma^2(F_o^2) + (0.0798P)^2 + 2.5978P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
5165 reflections	$\Delta \rho_{max} = 0.59 \text{ e} \text{ Å}^{-3}$
306 parameters	$\Delta \rho_{min} = -0.77 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cr1	0.25588 (5)	0.639340 (16)	0.37527 (5)	0.01611 (15)
Cl1	-0.00302 (9)	0.49037 (3)	0.19134 (9)	0.0312 (2)
01	0.4222 (2)	0.67803 (7)	0.3704 (2)	0.0216 (4)
O2	-0.2439 (3)	0.55214 (9)	0.2622 (3)	0.0319 (5)
O3	0.2469 (2)	0.68784 (7)	0.5176 (2)	0.0204 (4)
O4	0.3031 (3)	0.48259 (9)	0.1011 (3)	0.0351 (6)
N1	0.4013 (3)	0.58897 (9)	0.5279 (3)	0.0192 (5)
N2	0.0960 (3)	0.59080 (9)	0.4053 (3)	0.0189 (5)
N3	0.1005 (3)	0.68405 (9)	0.2162 (3)	0.0191 (5)
N4	0.2410 (3)	0.59186 (9)	0.1968 (3)	0.0195 (5)
C1	0.5654 (3)	0.67774 (10)	0.4665 (3)	0.0190 (5)
C2	0.6616 (3)	0.71784 (11)	0.4563 (3)	0.0235 (6)

H2A	0.6216	0.7442	0.3816	0.028*
C3	0.8124 (3)	0.71979 (12)	0.5522 (4)	0.0291 (7)
H3A	0.8744	0.7476	0.5435	0.035*
C4	0.8749 (3)	0.68135 (13)	0.6616 (4)	0.0298 (7)
H4A	0.9793	0.6826	0.7269	0.036*
C5	0.7842 (3)	0.64169 (12)	0.6740 (3)	0.0267 (6)
H5A	0.8270	0.6154	0.7484	0.032*
C6	0.6293 (3)	0.63902 (11)	0.5792 (3)	0.0204 (6)
C7	0.5446 (3)	0.59572 (11)	0.6021 (3)	0.0211 (6)
H7A	0.5979	0.5704	0.6770	0.025*
C8	0.3264 (3)	0.54421 (11)	0.5645 (3)	0.0257 (6)
H8A	0.3898	0.5315	0.6641	0.031*
H8B	0.3087	0.5134	0.4975	0.031*
C9	0.1781 (3)	0.56623 (11)	0.5511 (3)	0.0246 (6)
H9A	0.1173	0.5366	0.5637	0.029*
H9B	0.1965	0.5940	0.6263	0.029*
C10	-0.0439 (3)	0.61895 (11)	0.3877 (3)	0.0241 (6)
H10A	-0.0862	0.6387	0.2948	0.029*
H10B	-0.0168	0.6463	0.4655	0.029*
C11	-0.1655 (3)	0.58246 (11)	0.3909 (3)	0.0251 (6)
H11A	-0.1188	0.5569	0.4729	0.030*
H11B	-0.2390	0.6050	0.4078	0.030*
C12	0.1824 (3)	0.73617 (10)	0.4983 (3)	0.0202 (6)
C13	0.1971 (3)	0.76508 (11)	0.6207 (3)	0.0235 (6)
H13A	0.2506	0.7491	0.7133	0.028*
C14	0.1356 (3)	0.81617 (12)	0.6095 (4)	0.0267 (6)
H14A	0 1479	0 8349	0 6943	0.032*
C15	0.0555 (4)	0.84056 (12)	0.4752 (4)	0.0296 (7)
H15A	0.0158	0.8762	0.4680	0.035*
C16	0.0350 (3)	0.81254 (11)	0.3542 (4)	0.0266 (6)
H16A	-0.0224	0.8285	0.2622	0.032*
C17	0.0974 (3)	0.76009 (10)	0.3626 (3)	0.0202 (6)
C18	0.0578 (3)	0.73256 (10)	0.2282 (3)	0.0195 (5)
H18A	-0.0044	0.7514	0.1419	0.023*
C19	0.0393 (3)	0.65791 (11)	0.0744 (3)	0.0221 (6)
H19A	-0.0012	0.6856	-0.0028	0.027*
H19B	-0.0436	0.6329	0.0630	0.027*
C20	0 1661 (3)	0.62671 (11)	0.0640(3)	0.0224(6)
H20A	0 1254	0.6037	-0.0235	0.027*
H20B	0 2403	0.6523	0.0578	0.027*
C21	0.3885(3)	0 57035 (12)	0 2107 (3)	0.0258(6)
H21A	0 4408	0.5517	0.3049	0.031*
H21R	0.4523	0.6014	0.2109	0.031*
C22	0.3754(3)	0.53118(12)	0.0926 (3)	0.0274 (6)
H22A	0 3167	0 5483	-0.0028	0.033*
H22B	0.4773	0 5227	0 1023	0.033*
H2O	-0.180(5)	0 5348 (18)	0.242 (5)	0.053 (13)*
H4O	0 220 (5)	0 4791 (16)	0.044 (5)	0.038 (12)*
H2N	0.072 (4)	0 5629 (13)	0 347 (4)	0.018 (8)*

0.187 (4)

0.5638 (15)

0.188 (4)

0.030 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.0146 (2)	0.0155 (2)	0.0183 (2)	0.00028 (14)	0.00737 (18)	0.00112 (15)
Cl1	0.0317 (4)	0.0273 (4)	0.0337 (4)	-0.0050 (3)	0.0138 (3)	-0.0070 (3)
01	0.0149 (9)	0.0214 (9)	0.0269 (10)	-0.0021 (7)	0.0077 (8)	0.0030 (8)
O2	0.0215 (11)	0.0381 (12)	0.0356 (13)	-0.0032 (9)	0.0122 (10)	-0.0023 (10)
03	0.0223 (10)	0.0183 (9)	0.0196 (9)	0.0023 (7)	0.0085 (8)	0.0011 (7)
O4	0.0370 (14)	0.0282 (11)	0.0336 (13)	0.0027 (10)	0.0099 (11)	0.0004 (10)
N1	0.0181 (11)	0.0179 (10)	0.0231 (12)	0.0024 (8)	0.0104 (9)	0.0018 (9)
N2	0.0174 (11)	0.0175 (10)	0.0234 (12)	0.0004 (8)	0.0106 (9)	0.0010 (9)
N3	0.0164 (11)	0.0207 (10)	0.0202 (11)	-0.0006 (8)	0.0081 (9)	0.0007 (9)
N4	0.0183 (11)	0.0182 (10)	0.0222 (12)	-0.0005 (9)	0.0089 (9)	-0.0016 (9)
C1	0.0156 (12)	0.0204 (12)	0.0237 (14)	0.0000 (9)	0.0113 (11)	-0.0038 (10)
C2	0.0229 (14)	0.0213 (12)	0.0298 (15)	-0.0022 (10)	0.0150 (12)	-0.0013 (11)
C3	0.0256 (15)	0.0279 (14)	0.0383 (17)	-0.0078 (12)	0.0182 (14)	-0.0097 (13)
C4	0.0183 (14)	0.0370 (16)	0.0307 (16)	-0.0056 (12)	0.0077 (12)	-0.0071 (13)
C5	0.0225 (14)	0.0328 (15)	0.0234 (14)	0.0014 (12)	0.0089 (12)	-0.0002 (12)
C6	0.0215 (14)	0.0246 (13)	0.0160 (13)	-0.0006 (10)	0.0090 (11)	-0.0027 (10)
C7	0.0196 (13)	0.0208 (12)	0.0220 (13)	0.0042 (10)	0.0085 (11)	0.0014 (10)
C8	0.0207 (14)	0.0212 (13)	0.0339 (16)	0.0017 (10)	0.0109 (12)	0.0119 (12)
C9	0.0249 (14)	0.0246 (13)	0.0261 (15)	-0.0001 (11)	0.0130 (12)	0.0085 (11)
C10	0.0190 (13)	0.0212 (12)	0.0351 (16)	0.0028 (10)	0.0148 (12)	0.0055 (12)
C11	0.0221 (14)	0.0248 (13)	0.0327 (16)	0.0025 (11)	0.0161 (12)	0.0069 (12)
C12	0.0150 (12)	0.0186 (12)	0.0281 (15)	-0.0030 (10)	0.0107 (11)	-0.0010 (10)
C13	0.0197 (13)	0.0265 (13)	0.0237 (14)	-0.0016 (11)	0.0091 (11)	-0.0030 (11)
C14	0.0236 (14)	0.0274 (14)	0.0315 (16)	-0.0032 (11)	0.0144 (13)	-0.0087 (12)
C15	0.0322 (16)	0.0198 (13)	0.0373 (17)	0.0030 (12)	0.0160 (14)	-0.0022 (12)
C16	0.0274 (15)	0.0204 (13)	0.0336 (16)	0.0026 (11)	0.0149 (13)	0.0037 (12)
C17	0.0196 (13)	0.0170 (12)	0.0274 (14)	-0.0002 (10)	0.0134 (11)	0.0020 (10)
C18	0.0182 (12)	0.0206 (12)	0.0226 (13)	0.0001 (10)	0.0117 (11)	0.0039 (10)
C19	0.0200 (13)	0.0244 (13)	0.0163 (13)	0.0025 (11)	0.0030 (11)	0.0005 (11)
C20	0.0271 (14)	0.0256 (13)	0.0143 (12)	0.0020 (11)	0.0090 (11)	-0.0017 (11)
C21	0.0189 (13)	0.0301 (14)	0.0272 (15)	0.0030 (11)	0.0092 (12)	-0.0047 (12)
C22	0.0257 (15)	0.0317 (15)	0.0261 (15)	0.0041 (12)	0.0128 (13)	-0.0033 (12)

Geometric parameters (Å, °)

Cr1—O1	1.9207 (19)	С7—Н7А	0.9500
Cr1—O3	1.929 (2)	C8—C9	1.512 (4)
Cr1—N3	2.009 (2)	С8—Н8А	0.9900
Cr1—N1	2.020 (2)	С8—Н8В	0.9900
Cr1—N2	2.112 (2)	С9—Н9А	0.9900
Cr1—N4	2.135 (2)	С9—Н9В	0.9900
O1—C1	1.321 (3)	C10—C11	1.513 (4)
O2—C11	1.419 (4)	C10—H10A	0.9900
O2—H2O	0.86 (5)	C10—H10B	0.9900

O3—C12	1.323 (3)	C11—H11A	0.9900
O4—C22	1.417 (4)	C11—H11B	0.9900
O4—H4O	0.78 (4)	C12—C13	1.404 (4)
N1—C7	1.288 (4)	C12—C17	1.406 (4)
N1—C8	1.468 (3)	C13—C14	1.380 (4)
N2—C10	1.485 (3)	C13—H13A	0.9500
N2—C9	1.488 (4)	C14—C15	1.394 (5)
N2—H2N	0.87 (3)	C14—H14A	0.9500
N3—C18	1.292 (3)	C15—C16	1.364 (4)
N3—C19	1.465 (3)	C15—H15A	0.9500
N4—C21	1.497 (4)	C16—C17	1.417 (4)
N4—C20	1.506 (3)	C16—H16A	0.9500
N4—H4N	0.85 (4)	C17—C18	1.436 (4)
C1—C2	1.407 (4)	C18—H18A	0.9500
C1—C6	1.419 (4)	C19—C20	1.514 (4)
C2—C3	1.377 (4)	С19—Н19А	0.9900
C2—H2A	0.9500	С19—Н19В	0.9900
C3—C4	1.392 (5)	C20—H20A	0.9900
С3—НЗА	0.9500	C20—H20B	0.9900
C4—C5	1.370 (4)	C21—C22	1.517 (4)
C4—H4A	0.9500	C21—H21A	0.9900
C5—C6	1.406 (4)	C21—H21B	0.9900
С5—Н5А	0.9500	C22—H22A	0.9900
C6—C7	1.439 (4)	С22—Н22В	0.9900
O1—Cr1—O3	92.51 (9)	N2—C9—C8	107.9 (2)
O1—Cr1—N3	93.34 (9)	N2—C9—H9A	110.1
O3—Cr1—N3	90.50 (9)	С8—С9—Н9А	110.1
O1—Cr1—N1	90.29 (9)	N2—C9—H9B	110.1
O3—Cr1—N1	92.37 (9)	С8—С9—Н9В	110.1
N3—Cr1—N1	175.27 (9)	Н9А—С9—Н9В	108.4
O1—Cr1—N2	172.00 (9)	N2-C10-C11	115.2 (2)
O3—Cr1—N2	86.94 (9)	N2-C10-H10A	108.5
N3—Cr1—N2	94.65 (9)	C11—C10—H10A	108.5
N1—Cr1—N2	81.76 (9)	N2-C10-H10B	108.5
O1—Cr1—N4	88.80 (9)	C11-C10-H10B	108.5
O3—Cr1—N4	172.26 (8)	H10A—C10—H10B	107.5
N3—Cr1—N4	81.80 (9)	O2—C11—C10	113.6 (3)
N1—Cr1—N4	95.25 (9)	O2—C11—H11A	108.9
N2—Cr1—N4	92.81 (9)	C10-C11-H11A	108.9
C1—O1—Cr1	128.43 (18)	O2—C11—H11B	108.9
С11—О2—Н2О	109 (3)	C10—C11—H11B	108.9
C12—O3—Cr1	128.60 (18)	H11A—C11—H11B	107.7
С22—О4—Н4О	116 (3)	O3—C12—C13	118.0 (3)
C7—N1—C8	119.3 (2)	O3—C12—C17	124.2 (3)
C7—N1—Cr1	126.83 (19)	C13—C12—C17	117.7 (2)
C8—N1—Cr1	113.43 (17)	C14—C13—C12	121.5 (3)
C10—N2—C9	111.8 (2)	C14—C13—H13A	119.3
C10—N2—Cr1	115.81 (16)	C12—C13—H13A	119.3
C9—N2—Cr1	105.84 (17)	C13—C14—C15	120.7 (3)

C10—N2—H2N	109 (2)	C13—C14—H14A	119.7
C9—N2—H2N	104 (2)	C15—C14—H14A	119.7
Cr1—N2—H2N	110 (2)	C16-C15-C14	119.0 (3)
C18—N3—C19	119.7 (2)	C16—C15—H15A	120.5
C18—N3—Cr1	126.3 (2)	C14—C15—H15A	120.5
C19—N3—Cr1	113.92 (17)	C15—C16—C17	121.4 (3)
C21—N4—C20	110.7 (2)	C15—C16—H16A	119.3
C21—N4—Cr1	114.89 (17)	С17—С16—Н16А	119.3
C20—N4—Cr1	107.10 (16)	C12—C17—C16	119.6 (3)
C21—N4—H4N	105 (2)	C12—C17—C18	123.6 (2)
C20—N4—H4N	109 (3)	C16—C17—C18	116.6 (3)
Cr1—N4—H4N	110 (3)	N3—C18—C17	124.8 (3)
O1—C1—C2	118.3 (2)	N3—C18—H18A	117.6
O1—C1—C6	124.0 (2)	C17—C18—H18A	117.6
C2—C1—C6	117.7 (3)	N3—C19—C20	107.9 (2)
C3—C2—C1	121.5 (3)	N3—C19—H19A	110.1
C3—C2—H2A	119.3	С20—С19—Н19А	110.1
C1—C2—H2A	119.3	N3—C19—H19B	110.1
C2—C3—C4	120.6 (3)	С20—С19—Н19В	110.1
С2—С3—НЗА	119.7	H19A—C19—H19B	108.4
С4—С3—Н3А	119.7	N4—C20—C19	108.2 (2)
C5—C4—C3	119.2 (3)	N4—C20—H20A	110.1
C5—C4—H4A	120.4	C19—C20—H20A	110.1
C3—C4—H4A	120.4	N4—C20—H20B	110.1
C4—C5—C6	121.6 (3)	С19—С20—Н20В	110.1
C4—C5—H5A	119.2	H20A-C20-H20B	108.4
С6—С5—Н5А	119.2	N4—C21—C22	114.6 (2)
C5—C6—C1	119.4 (3)	N4—C21—H21A	108.6
C5—C6—C7	116.9 (3)	C22—C21—H21A	108.6
C1—C6—C7	123.7 (3)	N4—C21—H21B	108.6
N1—C7—C6	124.3 (3)	C22—C21—H21B	108.6
N1—C7—H7A	117.8	H21A—C21—H21B	107.6
С6—С7—Н7А	117.8	O4—C22—C21	110.6 (3)
N1—C8—C9	106.7 (2)	O4—C22—H22A	109.5
N1—C8—H8A	110.4	C21—C22—H22A	109.5
С9—С8—Н8А	110.4	O4—C22—H22B	109.5
N1—C8—H8B	110.4	C21—C22—H22B	109.5
С9—С8—Н8В	110.4	H22A—C22—H22B	108.1
H8A—C8—H8B	108.6		
O3—Cr1—O1—C1	75.1 (2)	C2—C3—C4—C5	-0.7 (5)
N3—Cr1—O1—C1	165.7 (2)	C3—C4—C5—C6	-0.3 (5)
N1—Cr1—O1—C1	-17.3 (2)	C4—C5—C6—C1	1.0 (4)
N4-Cr1-O1-C1	-112.5 (2)	C4—C5—C6—C7	-179.9 (3)
O1—Cr1—O3—C12	81.4 (2)	O1—C1—C6—C5	178.5 (3)
N3—Cr1—O3—C12	-12.0 (2)	C2—C1—C6—C5	-0.8 (4)
N1—Cr1—O3—C12	171.8 (2)	O1—C1—C6—C7	-0.4 (4)
N2—Cr1—O3—C12	-106.6 (2)	C2—C1—C6—C7	-179.7 (3)
O1—Cr1—N1—C7	13.2 (2)	C8—N1—C7—C6	-178.0 (3)
O3—Cr1—N1—C7	-79.3 (2)	Cr1—N1—C7—C6	-5.9 (4)

N2—Cr1—N1—C7	-165.8 (3)	C5—C6—C7—N1	177.5 (3)
N4—Cr1—N1—C7	102.1 (2)	C1—C6—C7—N1	-3.5 (4)
O1—Cr1—N1—C8	-174.3 (2)	C7—N1—C8—C9	139.3 (3)
O3—Cr1—N1—C8	93.2 (2)	Cr1—N1—C8—C9	-33.8 (3)
N2—Cr1—N1—C8	6.7 (2)	C10—N2—C9—C8	-173.7 (2)
N4—Cr1—N1—C8	-85.4 (2)	Cr1—N2—C9—C8	-46.8 (2)
O3—Cr1—N2—C10	53.9 (2)	N1—C8—C9—N2	53.2 (3)
N3—Cr1—N2—C10	-36.3 (2)	C9—N2—C10—C11	-66.0 (3)
N1—Cr1—N2—C10	146.8 (2)	Cr1—N2—C10—C11	172.7 (2)
N4—Cr1—N2—C10	-118.3 (2)	N2-C10-C11-O2	-75.3 (3)
O3—Cr1—N2—C9	-70.60 (17)	Cr1—O3—C12—C13	-177.08 (19)
N3—Cr1—N2—C9	-160.85 (18)	Cr1—O3—C12—C17	4.3 (4)
N1—Cr1—N2—C9	22.25 (17)	O3—C12—C13—C14	178.8 (3)
N4—Cr1—N2—C9	117.15 (18)	C17—C12—C13—C14	-2.5 (4)
O1—Cr1—N3—C18	-77.8 (2)	C12-C13-C14-C15	0.4 (5)
O3-Cr1-N3-C18	14.7 (2)	C13-C14-C15-C16	1.9 (5)
N2-Cr1-N3-C18	101.7 (2)	C14—C15—C16—C17	-2.1 (5)
N4—Cr1—N3—C18	-166.1 (2)	O3—C12—C17—C16	-179.1 (3)
O1-Cr1-N3-C19	99.16 (19)	C13—C12—C17—C16	2.3 (4)
O3-Cr1-N3-C19	-168.30 (19)	O3—C12—C17—C18	6.4 (4)
N2-Cr1-N3-C19	-81.33 (19)	C13—C12—C17—C18	-172.2 (3)
N4-Cr1-N3-C19	10.85 (19)	C15—C16—C17—C12	0.0 (4)
O1-Cr1-N4-C21	46.7 (2)	C15—C16—C17—C18	174.8 (3)
N3-Cr1-N4-C21	140.2 (2)	C19—N3—C18—C17	173.2 (3)
N1—Cr1—N4—C21	-43.5 (2)	Cr1—N3—C18—C17	-10.0 (4)
N2-Cr1-N4-C21	-125.5 (2)	C12-C17-C18-N3	-3.1 (4)
O1-Cr1-N4-C20	-76.64 (18)	C16—C17—C18—N3	-177.7 (3)
N3-Cr1-N4-C20	16.91 (17)	C18—N3—C19—C20	140.8 (3)
N1-Cr1-N4-C20	-166.82 (18)	Cr1-N3-C19-C20	-36.4 (3)
N2-Cr1-N4-C20	111.20 (18)	C21—N4—C20—C19	-166.5 (2)
Cr1—O1—C1—C2	-166.48 (19)	Cr1-N4-C20-C19	-40.6 (2)
Cr1—O1—C1—C6	14.2 (4)	N3-C19-C20-N4	50.4 (3)
O1—C1—C2—C3	-179.5 (3)	C20-N4-C21-C22	-65.6 (3)
C6—C1—C2—C3	-0.2 (4)	Cr1—N4—C21—C22	173.0 (2)
C1—C2—C3—C4	0.9 (5)	N4—C21—C22—O4	-66.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2O…Cl1	0.86 (5)	2.31 (5)	3.175 (3)	178 (4)
O4—H4O…Cl1 ⁱ	0.78 (4)	2.54 (4)	3.229 (3)	149 (4)
N4—H4N…Cl1	0.85 (4)	2.62 (4)	3.457 (3)	168 (4)
N2—H2N…Cl1	0.87 (3)	2.30 (3)	3.170 (2)	177 (3)
Symmetry codes: (i) $-x$, $-y+1$, $-z$.				

Fig. 1

